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A Novel Building and Tree Detection Method
From LiDAR Data and Aerial Images

Asghar Zarea and Ali Mohammadzadeh

Abstract—In recent decades, building and tree detection from
LiDAR data and aerial imagery with high automation and accu-
racy level has been the focus of many researchers which was
selected as the purpose of our research. At first, after data pre-
processing, off-terrain objects (OTO) including trees and buildings
were extracted from LiDAR data. Second, a number of features
were produced as inputs of support vector machines (SVMs) to
separate buildings from trees. In the SVM, an automatic proce-
dure was used for selecting the training data. After separating
the trees, mathematical morphology operations were used to elim-
inate small objects and fill small holes in the detected buildings
and trees. Finally, k-means clustering algorithm was used to sep-
arate buildings with different heights. The obtained results for
detected buildings and trees were evaluated by working group
III/4 of ISPRS, which demonstrated a high rate of success. For
completeness, correctness, and quality metrics in per area mode,
average values of 88.70%, 95.60%, and 85.30% for buildings and
74.30%, 63.50%, and 52.10% for trees were obtained, respectively.

Index Terms—Building detection, LiDAR, mathematical mor-
phology, support vector machines (SVMs), tree detection.

I. INTRODUCTION

F OR MANY countries, production of geospatial objects
such as buildings and trees is one of the most impor-

tant tasks. Main importance of building and tree detection
is in updating of digital maps and GIS databases [1], [2],
urban planning, environment protection, managing crises such
as flood and earthquake, urban security, and real estate indus-
try [3]. For this purpose, various works have been carried
out which mostly are based on the following mathematical
solutions: 1) active contour models [4]–[7]; 2) data classifica-
tion and segmentation [8]–[14]; 3) Hough transformation [15];
4) edge detection algorithms [3], [16]–[19]; and 5) mathemat-
ical morphology [20]–[22]. Among the mentioned solutions,
classification-based algorithms have been widely employed and
investigated. Khoshelham et al. [1] evaluated five different clas-
sification algorithms for building detection, which included
Adaboost algorithm, maximum likelihood and minimum dis-
tance classifiers, Dempster-Shafer method, and thresholding a
normalized digital surface model (nDSM). In this method, tree
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and other classes were obtained in classification process. In
another method, Gerke and Xiao [13] detected building and
tree classes by using segmentation and classification meth-
ods. Du [23] extracted buildings from high spatial resolution
images using object-oriented classification. Classes of water,
vegetation, and nonvegetation (including shadows, buildings,
and roads) were hierarchically separated at two levels. Then, the
buildings were separated from other classes at the third level.
Miliaresis and Kokkas [10] applied segmentation and unsuper-
vised object-based classification, in which manual operation
was performed to identify buildings from the obtained results.
Lach [24] used a pixel-based classification method to separate
buildings from trees using manually selected training data (TD).
Afterward, Lach proposed an automatic method for selecting
TD in the presence of many single trees in the input data.
Turlapaty et al. [25] separated tree and vegetation classes by
using a threshold from normalized difference vegetation index
(NDVI). Afterward, support vector machines (SVMs) classi-
fication was used to separate buildings from other remaining
classes. The TD for their classification was selected by block
classification method in a semiautomatic procedure which may
contain some impure data. Thus, recently, there has been a ten-
dency for increasing the automation of employed techniques
that can be increased by the automatic labeling of building
and tree classes or automatic selection of TD. Therefore, there
is a need to investigate new approaches of increasing the
automation level of TD selection in building and tree detection
algorithms.

Another important problem in segmentation and classifi-
cation of buildings and trees is their input features which
would dramatically affect the results. For instance, Miliaresis
and Kokkas used four features of mean and standard devi-
ation of elevations and slopes for object-level classification.
Lach used local texture features such as entropy, variance,
Laplacian, and maximum difference that were derived from
LiDAR data. Turlapaty et al. applied features such as mean,
variance, skewness, kurtosis, energy, and two-dimensional
(2-D) wavelet-based features of each block to separate build-
ings from nonbuildings. Mongus et al. [26] used three different
geometric, textural, and regional features to detect buildings.
To the best knowledge of the present authors, in the previous
works, few features have been simultaneously used in building
and tree detection and their performances have not been inves-
tigated. Thus, it is necessary to study the simultaneous use of
appropriate features in a classification algorithm for building
and tree detection.

In our proposed method, each submethod has its own
strengths and weaknesses and its weaknesses are eliminated or
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minimized by the subsequent one. For example, in the proposed
method, separation of clung buildings was used to separate
the building boundaries and minimized false positive pixels
which have been created by the previous stage. The primary
objective of this research was building and tree detection from
LiDAR data and aerial image. In general, automatic selection
of TD, examination of the effect of different features on build-
ing and tree detection, improvement of some algorithms or
indices, and separation of clung buildings were the secondary
aims of this study. According to the above introduction, we
have six main contributions including: 1) appropriate data pre-
processing; 2) OTOs detection; 3) various feature production
and their simultaneous usage; 4) separating buildings and trees;
5) postprocessing and integration of classification results; and
6) clung buildings separation. The mentioned contributions are
explained in the next sections in detail.

In this paper, the study area is described in Section II.
The proposed methodology of building and tree detection is
described in Section III. Section IV contains the implementa-
tion results of the proposed method and the discussions. Finally,
conclusion is provided in Section V.

II. STUDY AREAS

In this study, the data provided by working group (WG) III/4
of ISPRS from Vaihingen area of Germany were used which
included aerial images and LiDAR data. The aerial images were
captured by a digital camera Intergraph/ZI DMC with the focal
length of 120 mm at the elevation of 900 m above the ground
on August 6, 2008.

The captured images over this area had 0.08-m spatial resolu-
tion and three bands of infrared (IR), red (R), and green (G). All
the aerial images had interior- and exterior-orientation param-
eters. Airborne laser scanner data of the area were captured
by a Leica ALS50 system on August 21, 2008 and included
range and intensity of the first and last returns (LRs). The area
was covered by 10 strips and mean strip overlap was 30%. The
median point density in LiDAR data was 6.7 point per square
meter. In the regions covered by one strip, the average point
density was 4 point per square meter. A digital surface model
(DSM) with 0.25-m spatial resolution was produced from orig-
inal images by dense matching and was available for research.
In the Vaihingen area, ISPRS-WGIII/4 has determined three
study areas of area 1, area 2, and area 3. The study areas of
this research were three study areas which were placed in the
nadir of the aerial images. So, the amount of relief displace-
ment error of images in three areas was low. The reference
data for building and trees were prepared by ISPRS-WGIII/4.
In this study, union of reference data for buildings and trees
was used as the reference data for off-terrain objects (OTOs).
The aerial image of study areas and reference data is shown
in Fig. 1.

III. METHODOLOGY

Fig. 2 shows the proposed method for building and tree
detection from LiDAR and aerial images. In this study, DSM
was filtered based on a developed method to produce digital

Fig. 1. (a)–(c) Aerial images of areas 1–3. Region of interest is specified with
yellow lines in aerial images. (d)–(f) Reference data for trees of areas 1–3.
(g)–(i) Reference data for buildings of areas 1–3.

Fig. 2. Proposed methodology for building and tree detection from LiDAR data
and an aerial image.

terrain model (DTM). So, nDSM was obtained by subtracting
DTM from DSM. Then, OTOs were identified using a threshold
from nDSM. As shown in Fig. 2, after the preprocessing step,
DSM was fed to the feature production along with the georef-
erenced aerial ortho-image. Afterward, classification based on
SVMs was used to separate buildings from trees in each feature.

TD for each feature classification was automatically selected.
Finally, building and tree classes were separated after the
postprocessing and integration of classification results. Also,
clung buildings were separated by processing the building
class. Commission III-WG4 of ISPRS evaluated the detected
buildings and trees.
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A. Data Preprocessing

In preprocessing as the first step, two important corrections
were applied: 1) removal of a specific type of LiDAR noises and
2) ortho-rectification and georeferencing of input aerial images.
In the correction type (1), LiDAR points that significantly had
LR higher than their corresponding first return (FR) were con-
sidered to be noises. Thus, based on (1) and a threshold value
of “Th1,” this type of noise was removed

Point =

{
Noise, if LR− FR > Th1

Pure, else.
(1)

Detected noises were removed and replaced with an inter-
polated elevation from the neighboring points. For elevation
interpolation, nearest neighbor (NN) method was used to keep
the elevation leap along the edges of buildings [20].

In the correction type (2), input aerial images were ortho-
rectified using DSM and interior- and exterior-orientation
parameters. Collinearity model of (2) and (3) was used to
remove relief displacements and ortho-rectification [27]

xi = xp − c

× r11× (XG−XO) + r21× (YG−YO) + r31× (ZG−ZO)

r13× (XG−XO) + r23× (YG−YO) + r33 × (ZG−ZO)
(2)

yi = yp − c

× r12 × (XG −XO) + r22× (YG−YO) + r32× (ZG−ZO)

r13× (XG −XO) + r23× (YG−YO) + r33× (ZG−ZO)
(3)

where (XG, YG, ZG), (XO, YO, ZO), [r11 to r33], (xi, yi), and
(xp, yp, c) are ground coordinates of object point, perspective
center, elements of rotation matrix, image coordinates, and inte-
rior orientation parameters, respectively. Finally, ortho-rectified
images were georeferenced using ground control points (GCPs)
which were manually extracted from the input range images of
LiDAR data.

B. OTOs Detection

Here, a bare earth detection algorithm was developed to iden-
tify OTOs based on scan labeling algorithm (SLA) proposed by
Shan and Sampath [28]. SLA is an efficient filtering algorithm
to obtain bare earth or DTM from LiDAR data. In this method,
objects are considered to be between the discontinuities iden-
tified by height differences with neighboring points along the
scan lines [28]. Thus, a continuity criteria (CC) is applied in
both right–left direction (LRD) and left–right direction (RLD)
for each scan line to label initial ground and nonground points
with “1” and “0,” respectively. Equation (4) shows the initial
labeling function ϕ (vi) of this algorithm [29]

ϕ (vi) =

{
1, if vLRD

i + vRLD
i = 2

0, else
(4)

where vLRD
i and vRLD

i are initial labels of point vi in LRD
and RLD, respectively. There might be some nonground points

Fig. 3. Fitted 1-D regression to detect some possible nonground points.

which are initially labeled as ground points due to weak CC
values [28]. So, using a one-dimensional (1-D) regression algo-
rithm shown in (5), some of those nonground points would be
separated from the ground points [28]

Z = a0 + a1 ×D,D < Dt (5)

where Dt is neighbor radius of ground points and a0 and a1
are 1-D regression parameters. Considering Sigma (σ) as the
standard deviation of point’s distances from the regression line,
any point with the distance of 3σ or higher would be con-
sidered the nonground. For example, if point P0 and line Lreg

are considered as the investigated ground point and regression
line, respectively; then points P1 and P2 would be identified as
nonground points in Fig. 3.

Here, a developed SLA was proposed which had a number
of advantages over the original SLA. In the proposed method,
labeling happened in four RLD, LRD, up–down direction
(UDD), and down–up direction (DUD), which led to more reli-
able identification of ground points than the original method. In
the developed SLA, labeling function ϕd(vi) of point vi was as
follows:

ϕd (vi) =

{
1, if vLRD

i + vRLD
i + vUDD

i + vDUD
i = 4

0, else
(6)

where vLRD
i , vRLD

i , vUDD
i , and vDUD

i are temporary labels of point
vi in LRD, RLD, UDD, and DUD, respectively. Afterward, sim-
ilar to the original SLA, linear regression method was used to
eliminate some of the nonground points. Then, morphological
opening was applied to the results to remove some nonground
points that were not removed in the regression step. Finally,
nDSM was attained by subtracting the resultant bare earth
obtained by the developed SLA from DSM of the study area.
According to (7), a height threshold “Th2” was used to iden-
tify OTOs binary image indicated by label “1” for detected
buildings and trees

OTOs =

{
1, if nDSM > Th2

0, else.
(7)

Finally, another opening and closing operators were applied
to remove very small OTOs and small gaps from OTOs.

C. Feature Production

In this section, a number of features are produced from DSMs
and aerial images. These features would be inputs of the clas-
sification process for separating buildings from trees. For this
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purpose, four features from aerial images including two differ-
ent enriched vegetation indices (EVIs) and saturation and hue
bands from IHS transformation, and five features from DSMs
including gradient, variance, roughness, laplacian, and SSD [9]
were produced. The above-mentioned features are described
below.

1) Vegetation Indices Combined With Shadow Index: In
this study, two slope-based vegetation indices (VIs) of NDVI
and infrared-to-red ratio index (IRRI) [(8) and (9)] were used
and developed to efficiently identify vegetation [30]–[32].
Vegetation had very high reflectance in IR band compared to
R-band which resulted in high values for the mentioned indices

NDVI = (IR − R)/(IR + R) (8)

IRRI = IR/R. (9)

A problem was raised in shadow areas, in which vegeta-
tion had a low value for the mentioned indices. To solve this
weakness, new indices were developed which enabled better
detection of vegetation even in shadow areas. Grigillo et al. [33]
used the difference between normalized R-band reflectance and
original R-band reflectance as a shadow index (SI). Turlapaty
et al. [25] used R and yellow band multiplication of a world-
view-2 pan sharpened image as SI. Additionally, some shadow
detection algorithms have been described by Shahtahmassebi
et al. [34] and Chung et al. [35].

Our observations showed that shadows have low reflectance
in R- and G-band of the aerial images. Equation (10) shows a
new proposed SI in which low SI values indicated the shadows

SI = (G + R)× G. (10)

By applying a threshold to the output of the SI, a binary
image (BISA) which showed the shadow areas was produced.
Also, a binary image of vegetation (BIveg) was calculated using
a threshold from NDVI or IRRI bands. Then, the intersection of
BISA with BIveg was demonstrated as a binary image (BISAV),
which identified shadows over vegetation areas. Afterward,
EVIs were obtained using the linear combination of VIs and
BISAV according to (11). According to this enrichment, the
shadow areas with vegetation would be strengthened and non-
shadow areas would not be changed

EVIs = VIs + BISAV × VIs/2. (11)

2) Saturation and Hue: Here, the aerial images with false
color composition (G-R-IR) were transformed into an IHS color
space to extract the desired hue and saturation features [36].
Intensity and saturation ranges were between “0” and “1”; and
hue range was between 0 and 360. Zero value of hue repre-
sents red color and values of 120 and 240 show green and
blue colors, respectively [36]. Saturation feature represents a
dilution of color [36]. Vegetations in (G-R-IR) false color com-
position were shown in dark blue resulting in higher hue and
saturations values than nonvegetation areas, which led to better
discrimination.

3) Features Generated From Range Image of LiDAR Data:
As previously mentioned, five features are generated from
the range image of LiDAR data. In this research, to produce

gradient feature, a kernel with odd dimensions was placed
on the range image. Then, the gradient images in horizon-
tal (gradienth), vertical (gradientv), and diagonal (gradientd)
directions were produced and averaged according to (12)

Gradient = (gradienth + gradientv + gradientd)/3. (12)

According to (13), Laplacian feature of each point was pro-
duced from the sum of the second derivatives of elevation with
respect to x and y [36]

Laplacian = ∂2h/∂x2 + ∂2h/∂y2 (13)

where h(x, y) is the range image of LiDAR data and x and y
represent the horizontal and vertical directions, respectively. If
a kernel with the size of 3× 3 pixels is considered, then second
derivatives of elevation with respect to x and y can be calculated
from (14) and (15) [36]

∂2h/∂x2 = h(x+ 1, y)− 2× h(x, y) + h(x− 1, y) (14)

∂2h/∂y2 = h(x, y + 1)− 2× h(x, y) + h(x, y − 1). (15)

In the above equations, x and y are indices of the mentioned
kernel in horizontal and vertical directions, respectively.

A kernel with odd dimensions was applied to the range image
to produce SSD1 [9], roughness, and variance features. SSD
was obtained through fitted plan variance at all points within
the kernel by least square method.

The features generated from the range images of LIDAR
data were expected to have high values in elevated vegetation
areas (trees) than building points, except for their edge points.
Thus, in the postprocessing, morphological operators were used
to remove those edge points. First, a threshold of “Th3” was
applied to feature image (F) to calculate a binary image (BI) as
follows:

BI =

{
1, if F > Th3

0, else.
(16)

PBI was obtained through applying a morphological closing
followed by an opening on the BI to remove building bound-
ary. Ultimately, the processed features (PF) were obtained
according to (17)

PF = (1− BI + PBI)× F. (17)

Although the boundaries of buildings were removed, feature
values of trees became weaker in the PBI image. Therefore, a
maximum filter was applied to PF in order to compensate for
the mentioned effect on trees.

D. Separating Buildings and Trees

Here, the produced features were overlapped with OTOs
binary image to identify feature areas related to buildings and
trees. Then, the identified feature areas were classified inde-
pendently using SVMs to detect buildings and trees. SVM
is a supervised classification method proposed by Cortes and

1Sum of squares of elevation deviation.
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Vapnik [37]. To increase the automation level of the proposed
algorithm, an approach was automatically developed to select
the TD of SVM. The concept of automatic TD selection lies in
the fact that feature values for trees are higher than the build-
ings due to essence of features. For example, values of NDVI
and IRRI for trees are higher than buildings because of very
high reflectance in IR-band compared to R-band for trees. This
concept was declared in previous sections for each feature.

TD for each feature were independently selected. First, the
produced features were overlapped with OTOs binary image to
identify feature areas related to buildings and trees. Afterward,
the identified area in each feature was independently classi-
fied into two classes using k-means clustering algorithm. Then,
the classes were labeled as buildings and trees in an automatic
procedure based on the fact that feature values for trees were
higher than those for buildings. So, the classes that had high and
low average feature values were labeled as trees and buildings,
respectively. After clustering, (18) and (19) were used to select
TD of each feature for building and tree classes, respectively

TDBuild =

{
1, if FV 〈m1 + d× s1 and FV 〉m1 − d× s1

0, else

(18)

TDTrees =

{
1, if FV 〈m2 + d× s2 and FV 〉m2 − d× s2

0, else

(19)

where FV is feature value, (m1, s1) and (m2, s2) are center and
standard deviation of building and tree classes in the related
features, respectively. “d” is constant coefficient in (0,3], and
labels “1” and “0” represent the pixel which is selected as TD
and non-TD sets, respectively.

In the classes, by decreasing the value of parameter “d,” more
reliable TD points were selected; but, their percentage was dra-
matically reduced and vice versa. Therefore, an appropriate
value for parameter “d” was arbitrarily determined by users.
Finally, a definite number of selected TD points were randomly
chosen as the final selected TD points.

E. Postprocessing and Integration of Classification Results

In postprocessing, morphological opening and closing opera-
tors were applied to remove small objects and fill holes of build-
ings and trees in each SVM classification result. Afterward,
nine postprocessed binary images were obtained for each class.
It is necessary to note that buildings and trees are illustrated in
independent binary images which values of 1 and 0 refers to
buildings/trees and nonbuildings/nontrees, respectively. These
nine binary images for building/trees (a total of 18 images) are
added together to produce integrated results for buildings/trees.
According to (20), a pixel is assigned to building/tree class
if the total amount of the pixel in the nine binary images of
building/tree is greater than threshold “Th4”

Pixeli =

⎧⎪⎨
⎪⎩

Building, if SLi
B ≥ Th4

Tree, if SLi
T ≥ Th4

0, else

(20)

where SLi
B and SLi

T are the sum of labels for a pixel in the
nine processed binary images of building and tree, respectively.
Also, “Th4” is a constant integer value within [1], [9] that con-
trols the entirety and validity of detected buildings and trees.
In other words, (20) expresses that pixels are assigned to the
building/tree class if they are classified as building/tree pixels
at least in a certain percentage of processed binary images.

F. Separation of Clung Buildings

In this section, clung buildings with elevation difference of
above 1.5 m are separated as much as possible. First, differ-
ent labels were assigned to the detected buildings by connected
component analysis (CCA) algorithm, except for clung build-
ings which take the same label. For separating clung buildings,
a k-means clustering algorithm with two classes was inde-
pendently applied to the nDSM of each detected building.
Afterward, mathematical morphological operations of opening
followed by closing were applied to remove small clusters and
fill the holes, which would increase the validity of the detected
buildings, but would decrease their entirety. Buildings with two
main separated clusters were considered clung buildings and
unique labels were given to each separated building. If one of
the clusters of a building had low population percentage of the
building, then that cluster would be separated from the building
with a given unique label, but would not be considered a clung
building.

G. Evaluation Method

Reference data provided by ISPRS-WGIII/4 were used for
the evaluation of the previous steps, except for the final detec-
tion results which were carried out by ISPRS-WGIII/4 itself.
To evaluate the results, completeness (CP), correctness (CR),
and quality (Q) metrics were used in per area and per object
modes based on the method described by Rutzinger et al. [38].
In addition to the mentioned metrics, average root-mean-square
(rms) distances between the corresponding vertices of refer-
ence and detected building polygons were used as geometrical
accuracy for the evaluation of the final detected buildings and
trees result. Details of the evaluation based on the rms met-
ric were described in http://www2.isprs.org/tl_files/isprs/wg34/
docs/EvaluationObjectDetection.pdf

According to (21), overall accuracy of OTOs classification
was used to interpretation some parts of the results [1]

OA = (TP + TN) / (TP + TN + FP + FN) (21)

where TP and TN are the number of pixels which classified
correctly as building and tree, respectively, FP and FN are the
number of tree and building pixels which classified as building
and tree, respectively.

IV. RESULTS AND DISCUSSION

A. Preprocessing

Considering the average elevation accuracy of 0.15 m for
LiDAR data [39], [40] height difference accuracy (σtotal) of
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Fig. 4. (a)–(c) Ortho-rectified images of areas 1–3.

0.21 m was calculated based on error propagation between the
FRs and LRs [refer to (22)]

σtotal =
√

σ2
FR + σ2

LR =
√

0.152 + 0.152 = 0.21 m (22)

where σFR and σLR are the FR and LR elevation accura-
cies, respectively. A user-defined value of 0.3 m was chosen
for “Th1” which was larger than the height difference accu-
racy. By applying (1), about 0.14%, 0.56%, and 0.2% of total
LiDAR points were detected as noise in areas 1–3, respectively.
Afterward, grid-based LiDAR range data were produced with
the resolution of 0.25 m, in which ISPRS-WGIII/4 used the
same resolution as their DSM products. Consequently, ortho-
rectified image with 0.25-m resolution was obtained using
range data and aerial image, as shown in Fig. 4. In this research,
73, 84, and 71 GCPs with uniform distribution were used
in the georeferencing of the ortho-rectified images of areas
1–3, respectively. The GCPs were selected by visual match-
ing between ortho-rectified image and DSM of the study areas.
Rotation, transition, and scale (RST) method were used to geo-
reference the ortho-rectified images. Average RMSE of 0.9,
0.97, and 0.95 DSM pixel size are calculated for 73, 84, and
71 GCPs of areas 1–3, respectively. Also, RMSE of 0.96, 1.08,
and 1.01 DSM pixel size are calculated for 10 ground check
points of areas 1–3, respectively.

B. OTOs Detection

In the proposed method, gradient between adjacent pixels
was used as the continuity criterion (CC). In the original and
developed SLA, allowable slope value to comply with CC was
considered 60% in all study areas. For both algorithms, a kernel
with the size of 7× 7 pixels was used in all study areas, instead
of the neighborhood radius mentioned in (5). Then, in the devel-
oped SLA, a kernel with the size of 9× 9 pixels was used as the
structuring element (SE) of morphological opening to remove
nonground points. After the final diagnosis of terrain points, a
cubic interpolation followed by an NN one was applied to the
results of the original and developed SLA to produce DTM.

Fig. 5 shows the efficiency of the developed SLA in DTM
and nDSM of OTOs production compared to the results
obtained by applying the original SLA. A threshold (Th2) of
1.5 m was used to remove low height objects from nDSM to
produce nDSM of OTOs. Afterward, objects with planimetric
dimensions of below 2.5 m × 2.5 m were removed from OTOs
binary images (orthogonal projection of nDSM of OTOs on XY

Fig. 5. (a)–(c) Generated DTM by original SLA in areas 1–3, respectively.
(d)–(f) Generated DTM by developed SLA in areas 1–3, respectively. (g), (i),
and (k) Produced nDSM of OTOs based on original SLA in areas 1–3, respec-
tively. (h), (j), and (l) Produced nDSM of OTOs based on developed SLA in
areas 1–3, respectively.
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TABLE I
ASSESSMENTS RESULTS OF DETECTED OTOS BASED ON ORIGINAL AND

DEVELOPED SLA IN PER AREA MODE FOR CP, CR, AND Q

plane) by a morphological opening with the SE size of 9× 9
pixels. Afterward, small holes with the planimetric dimensions
of below 1.5 m × 1.5 m were filled by applying a morpholog-
ical closing with the SE size of 5× 5 pixels. The final output
for OTOs binary images was compared with the reference data
of OTOs which were obtained with union of reference data for
buildings and trees. The results of the corresponding accuracy
assessment are presented in Table I. According to Table I, it can
be easily seen that the Q metric of the developed SLA in areas
1–3 in comparison to the original SLA for both before/after
morphology steps had improved accuracies by about 0.7%,
4.4%, and 2%, respectively. Additionally, applying morpholog-
ical step improved the Q metric on average by about 1% for the
developed SLA.

C. Feature Production and Postprocessing

The produced features related to LiDAR DSM were postpro-
cessed. In all study areas, value of parameter “Th3” mentioned
in (16) was considered 0.1 for SSD, variance, and roughness
features and 0.3 for gradient and Laplacian features. Then, a
morphological closing with the SE of 5× 5 pixels followed by
an opening operator with the SE of 19× 19 pixels was applied
to remove building edges.

Finally, a maximum filter with the size of 3× 3 pixels
was applied to compensate effects of trees mentioned in
Section III-C. Fig. 6 shows the efficiency of EVIs in shadow
areas in comparison to VIs. As can be seen in this figure, EVIs
have high value for vegetation in shadow areas in comparison
to VIs.

D. Separating Buildings and Trees

As mentioned in Section III-D, parameter “d” should be
appropriately chosen to select a sufficient number of TD in
SVMs classification. Fig. 7 shows the diagram of variation of
average overall accuracy of nine classifications for the change
of parameter “d” mentioned in (18) and (19). For study areas 1,
2, and 3, the standard deviation values of 0.2180, 0.0192, and

Fig. 6. (a)–(c) Ortho-rectified images of areas 1–3: in the white boxes, shadow
overlaid on whole or some part of trees. (d)–(f) Traditional NDVI of areas
1–3. (g)–(i) Enriched NDVI of areas 1–3. (j)–(l) Traditional IRRI of areas 1–3.
(m)–(o) Enriched IRRI of areas 1–3.

0.0034 were observed in the overall accuracy of obtained classi-
fication, respectively. According to these experiments, it would
be deduced that the classification results were not very sensi-
tive to small variations in parameter “d.” By choosing value 1
for parameter “d,” possible TD set would be identified, out of
which only 50 random samples are selected as TD for each of
building and tree classes in SVMs. Here, a Gaussian radial basis
(RBF) function kernel was used in the SVMs classification to
achieve better results [41].

In this section, detected buildings and trees for traditional
NDVI and IRRI are presented to compare enriched NDVI
(ENDVI) and IRRI (EIRRI); but, they do not contribute in
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Fig. 7. Average overall accuracy of classifications as a function of parame-
ter “d.”

TABLE II
EVALUATING DETECTED BUILDINGS FROM EACH FEATURE

IN PER AREA MODE

The best values per column are highlighted by bold font.

separating the building from trees. To improve the detected
buildings and trees, a morphological opening followed by a
closing operator with the SE size of 7× 7 pixels was applied
to remove small objects and fill small holes in each detected
building and tree results. Tables II and III show the evalua-
tion of results based on the reference data provided by WGIII/4
of ISPRS under “urban classification and three-dimensional
(3-D) building reconstruction” test project in 2013. According
to Tables II and III, ENDVI and EIRRI had the best results
compared to the ones obtained by the remaining features.
Additionally, average qualities of detected buildings and trees
in three study areas were increased by almost 2% and 1.6% in
enriched NDVI and IRRI compared to traditional NDVI and
IRRI, respectively.

TABLE III
EVALUATING DETECTED TREES FROM EACH FEATURE

IN PER AREA MODE

The best values per column are highlighted by bold font.

Fig. 8. Effect of parameter “Th4” in CP, CR, and Q of detected buildings and
trees. (a) Area 1. (b) Area 2. (c) Area 3.

E. Integration Classification Results

For combining classification results, threshold “Th4” was
considered to be 7, i.e., the integration result for a pixel of
interest would be building/tree if at least 75% or 7/9 of the clas-
sifications results were labeled as building/tree. According to
Fig. 8, selecting such a high value for parameter “Th4” would
increase the CR of detected buildings or trees and decrease their
CP and vice versa. Fig. 9 shows detected buildings and trees
from the integration of the classification results and Table IV
represents their evaluation results based on pixel-level indices.
By comparing Table IV with Tables II and III, it can be deduced
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Fig. 9. Results of building and tree detection after combining the classification
results. (a) and (d) Area 1. (b) and (e) Area 2. (c) and (f) Area 3.

TABLE IV
EVALUATION RESULTS OF DETECTED BUILDINGS AND TREES

IN PER AREA MODE

that two metrics of CP and Q increased after the integration of
classification results.

F. Separating Clung Buildings With Different Elevations

Fig. 10 illustrates the separated clung buildings based on k-
means algorithm with successful results. As can be seen in this
figure, individual buildings with different roof elevations were
not divided and just clung buildings were discriminated. At this
stage, a morphological opening with the SE size of 9× 9 pixels
followed by a closing operator with the SE size of 5× 5 pixels
was applied to each class to improve the results. By comparing
Tables IV and V, it can be express that metrics of CR and Q
increased after separating clung buildings by about 3.5% and
1.5%, respectively.

G. Discussion

A brief evaluation of the obtained results was pub-
lished with abbreviations KNTU/KNTU_mod for tree/building
in ISPRS link at http://www2.isprs.org/commissions/comm3/

Fig. 10. Detected buildings after the separation of clung buildings. (a) Area 1.
(b) Area 2. (c) Area 3.

TABLE V
EVALUATION RESULTS OF DETECTED BUILDINGS IN PER AREA MODE

AFTER SEPARATING CLUNG BUILDINGS

TABLE VI
ISPRS-WGIII/4 AVERAGE EVALUATION RESULTS FOR DETECTED

BUILDINGS OF THE PROPOSED METHOD COMPARED TO OTHER

METHODS [42] (ABOVE-MENTIONED LINK)

The best values per column are highlighted by bold font.

wg4/results.html in comparison to the results obtained by other
researchers [42]. It should be noted that the buildings with the
area size of below 2.5 m2 were not included in the evaluation
process. It is necessary to express that the results mentioned
in [42] were the average results of areas 1–3, whereas those
mentioned in the above link were the results of areas 1–3. By
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TABLE VII
ISPRS-WGIII/4 AVERAGE EVALUATION RESULTS FOR DETECTED TREES

OF THE PROPOSED METHOD COMPARED TO OTHER METHODS [42]

Best values per column are highlighted by bold font.

TABLE VIII
AVERAGE RMS VALUES FOR DETECTED BUILDINGS OF THE PROPOSED

METHOD COMPARED TO OTHER METHODS [42],
(ABOVE-MENTIONED LINK)

TABLE IX
AVERAGE RMS VALUES FOR DETECTED TREES OF THE PROPOSED

METHOD COMPARED TO OTHER METHODS [42]

comparing the average results, it can be seen that detected build-
ings and trees have third and first Q metric in per object mode,
respectively. It should be expressed that Q metric was not spec-
ified in the above-mentioned link but can be calculated from CP
and CR metrics [38].

Moreover, the average evaluation results of proposed method
for building detection achieved maximum CP, CR, and Q met-
rics in mode of per object larger than 50 m2 among other
mentioned methods.

Tables VI and VII demonstrate the obtained accuracies per
area, per object, and per object larger than 50 m2 for the
proposed method compared to other methods [42] (above-
mentioned link). According to Tables VIII and IX, average rms
of differences between the corresponding vertices of detected
building/tree and their reference data was approximately 0.83
and 1.50 m, respectively. Once more, it can be easily deduced
that the obtained RMSE by the proposed method for building

detection was in the top 25% compared to other RMSEs which
were between 0.6 and 1.2 m. The RMSE’s of building and trees
for other works are in domains of (0.67–1.20) and (1.3–1.6),
respectively. Our achieved RMSE’s for buildings and trees are
0.83 and 1.5, respectively, which indicates acceptability of the
results.

One of the important errors in building detection is the
existence of nonbuilding pixels (type II error2) which was
dramatically reduced in the proposed method owing to the
following reasons. As noted earlier, low values of “Th4” men-
tioned in (20) reduced CR and increased CP and type II error
of the detected buildings and vice versa. Thus, a high value
was chosen for Th4 = 7. Also for separation of clung build-
ings from other remaining ones, especially individual buildings,
nonbuilding pixels were removed by morphological operators,
which resulted in high CR accuracy.

V. CONCLUSION

The purpose of this study was to present a method which
identified the buildings and trees from LiDAR and aerial
images. The EVIs production, automatic TD selection, and
clung building separation were initiatives of the proposed
method. Also, SLA was developed in this study to efficiently
detect OTOs. Q metric of OTOs detection based on the devel-
oped SLA demonstrated an average improvement by about
2.3% in comparison to the original SLA. In this study, an
independent classification was used for each feature to sepa-
rate buildings from trees and finally classification results were
integrated. The procedure proposed for automatic TD selec-
tion was successfully determined to be correct and sufficient
TD for SVMs classification. In addition, average qualities of
SVMs classification based on ENDVI and EIRRI increased by
almost 2.0% and 1.6% in comparison to the traditional NDVI
and IRRI, respectively. It can be expressed that the uses of mor-
phological operators slightly improved results in each section.
In average, morphological operators increased the Q metric of
OTOs detection by about 1%. In the separation of clung build-
ing with different elevations, nonbuilding pixels were filtered
or reduced as much as possible using morphological opera-
tors, which resulted in average 1.5% increase in the Qmetric
of the detected buildings. A high value for the CR of building
detection result played an important role in 3-D building recon-
struction. Comparing to type I3, type II error more severely
affects the determination of 3-D planes or roof structure of
buildings from LiDAR data and would result in some diffi-
culties. Evaluation results demonstrated the efficiency of the
proposed method; in per area mode, average CP, CR, and
Q of 88.7%, 95.6%, 85.3% and 74.3%, 63.5%, 52.1% were
obtained for building and tree detection, respectively. In per
object mode, the proposed method achieved high and maximum
Q for detected buildings and trees, respectively; in comparison
to other mentioned methods and had still high values for CP
and CR metrics. In addition, average geometric accuracies of
the building and tree boundaries were approximately 0.83 and
1.5 m, respectively; that was also convincing in comparison to

2Nonbuilding pixels that are classified as building pixels.
3Building pixels that are classified as nonbuilding pixels.
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the accuracy of others method. In general, the proposed method
can be used as a successful method for the detection of build-
ings and trees with different sizes using LiDAR data and aerial
image.
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