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In this paper, we propose a context-sensitive technique for unsupervised change detection
in multitemporal remote sensing images. The technique is based on fuzzy clustering
approach and takes care of spatial correlation between neighboring pixels of the difference
image produced by comparing two images acquired on the same geographical area at dif-
ferent times. Since the ranges of pixel values of the difference image belonging to the two
clusters (changed and unchanged) generally have overlap, fuzzy clustering techniques seem
to be an appropriate and realistic choice to identify them (as we already know from pattern
recognition literatures that fuzzy set can handle this type of situation very well). Two fuzzy
clustering algorithms, namely fuzzy c-means (FCM) and Gustafson–Kessel clustering (GKC)
algorithms have been used for this task in the proposed work. For clustering purpose var-
ious image features are extracted using the neighborhood information of pixels. Hybridiza-
tion of FCM and GKC with two other optimization techniques, genetic algorithm (GA) and
simulated annealing (SA), is made to further enhance the performance. To show the effec-
tiveness of the proposed technique, experiments are conducted on two multispectral and
multitemporal remote sensing images. A fuzzy cluster validity index (Xie–Beni) is used
to quantitatively evaluate the performance. Results are compared with those of existing
Markov random field (MRF) and neural network based algorithms and found to be superior.
The proposed technique is less time consuming and unlike MRF does not require any a pri-
ori knowledge of distributions of changed and unchanged pixels.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In remote sensing applications, change detection is the process aimed at identifying differences in the state of a land cover
by analyzing a pair of images acquired on the same geographical area at different times [58,61]. Such a problem plays an
important role in different domains like studies on land use/land cover dynamic [10], monitoring shifting cultivations [6],
burned area identification [4], analysis of deforestation processes [24,30], assessment of vegetation changes [8], monitoring
of urban growth [47] and oceanography [43]. Since all these applications usually require an analysis of large areas, develop-
ment of completely automatic and unsupervised change detection techniques is of high relevance to reduce the time
required by manual image analysis.

Change detection in remotely sensed data may be done either in supervised or in unsupervised manner
[1,3,5,7,8,13,17,21,24,32,33,36,46,47]. In supervised techniques, a set of training patterns is required for learning the
. All rights reserved.
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classifier. In real-life, it is difficult to have data containing spectral signatures of changes from which training patterns can be
generated. In unsupervised techniques, there is no need of training data. Thus the usefulness of unsupervised techniques is
more than supervised ones for this problem. We may think of unsupervised change detection problem as a clustering one
where the task is to discriminate the data into two groups changed and unchanged.

When an user has two multitemporal images in hand to detect changes between them, it may happen that the images are
not consistent or comparable because of misregistration [11,65] (i.e. the two images may not be coregistered [7]) and radio-
metric and geometric errors [66]. Moreover, some noise may be present. Hence before analyzing the images for detecting
changes, a certain degree of (pre) processing is needed [7]. Thus, in literature [58,61], three steps are suggested to be per-
formed sequentially for unsupervised change detection. They are (i) pre-processing, (ii) image comparison and (iii) image
analysis. In step (i), operations like coregistration, radiometric and geometric corrections and noise reduction are done to
make the two multitemporal images compatible. To remove the effects of sensor errors and environmental factors, radiomet-
ric corrections are needed [7,66].

In step (ii), the two pre-processed images are taken as input and compared pixel by pixel and thereafter another image is
generated, called the difference image (DI). To generate the DI, we may consider: (a) only one spectral band (i.e., Univariate
Image Differencing - UID) [61], (b) multiple spectral bands (i.e. Change Vector Analysis - CVA) [5,61], (c) vegetation indices
(Vegetation Index Differencing - VID) [61,64] etc. Tasseled Cap Transformation [18] is also a popular method. The most pop-
ular of these is the CVA and used in our study. We have chosen CVA because by using this technique reflectance properties of
various land cover types can be combined.

After performing the above two steps (pre-processing and image comparison and thereby generating the DI) change detec-
tion is done on the DI. Either context-insensitive or context-sensitive procedure is adopted [21] for this. Histogram threshold-
ing [5,46] is of the first kind. The threshold value may be detected by manual trial-and-error (MTET) process or by automatic
techniques by analyzing the statistical distribution of the DI. In these cases spatial correlation between the neighboring pixels
is not taken into account. Most of the context-sensitive techniques [1,3,5,36] are based on MRF, require the selection or esti-
mation of a model for the statistical distributions of changed and unchanged classes, and can overcome the drawbacks of con-
text-insensitive approaches mentioned earlier. Algorithms (like Expectation–Maximization (EM) [14]) are required for
estimating the class distributions assuming different standard distributions e.g., Gaussian [5], generalized Gaussian [1] and
mixture of Gaussians [3]. A few context-sensitive techniques using neural networks are also suggested recently [21,22,24,54].

To the best of the authors’ knowledge, the use of fuzzy clustering for change detection in remotely sensed images has not
been reported in the literature. So, in order to overcome the limitations imposed by the need of selecting or estimating a sta-
tistical model for changed and unchanged class distributions, we propose unsupervised, distribution free and context-sensitive
change detection techniques based on fuzzy clustering [2] approach. Our attempt here is to recover the changed and unchanged
regions of the DI by constructing two clusters. Normally the pixels of the DI belonging to two clusters changed and unchanged
are not separable by sharp boundaries (as they are highly overlapped). As fuzzy clustering technique is more appropriate and
realistic to separate overlapping clusters [66], we have chosen fuzzy clustering techniques to have a better judgement of the
two groups. From our results it is also noticed that fuzzy clustering is a better choice than crisp clustering (as the crisp version
yields worse results). In this regard we have used two fuzzy clustering algorithms namely fuzzy c-means [2] and Gustafson
Kessel [26]. There are several fuzzy cluster validity indices available in the literature to evaluate fuzzy clustering results.
We have used one of the popular measures proposed by Xie and Beni [69] which considers both intra cluster compactness
and inter cluster separation. We have used Mahalanobis norm while evaluating the outcome of GK type clustering as in [39].

As clustering processes are sensitive to their initializations and thus have a tendency to get stuck to local optima, we have
combined them with two well known other optimization techniques namely genetic algorithms (GAs) [23] and simulated
annealing (SA) [67] with a hope to have improved performance.

In this work we emphasis on the physical interpretation of the utility of these two fuzzy clustering algorithms for change
detection without going into deep mathematical details. We have stated some elementary formulae in Section 2.2 to
describe the fuzzy clusterings without deviating from this very goal. We also tried to analyze how and to what extent effi-
ciencies of the used techniques could be enhanced by adjusting the parameters of the fuzzy algorithms or by hybridizing
them with other optimization techniques. Our main concern here is to deal with an environment having overlapping irreg-
ular shaped and unstructured clusters.

To assess the proposed technique, experiments are carried out on two real world data sets and compared the results with
those obtained by already published techniques [5,21] for solving the same problem of change detection on the same data
sets. The proposed technique is found to be superior with respect to both error and time requirement.

This paper is organized as follows: Section 2 provides a brief description of a few crisp and fuzzy clustering algorithms.
Section 3 is about genetic algorithms and simulated annealing as a search procedure. Section 4 is about validity measures for
fuzzy clustering. Section 5 describes the proposed change detection technique. The data sets used in the experiments and the
results obtained are described in Sections 6 and 7, respectively. Finally, in Section 8, conclusions are drawn.
2. Clustering

Cluster analysis [31,34] partitions a data set into a reasonable number of disjoint groups, where each group contains
similar patterns. The partitions should be such that patterns are ‘‘homogeneous” within the clusters and ‘‘heterogeneous”
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between the clusters. Each datum in the data set is a point in the feature space having the dimensionality equal to the num-
ber of attributes of it. The clustering algorithms (both fuzzy and non-fuzzy) used in the present investigation are described
here in brief.

2.1. Hard c-means (HCM) clustering

One of the simplest clustering techniques is HCM clustering [16,62]. In this method, from a set of patterns, c number of
patterns are randomly chosen as initial cluster centers of the c clusters. In each iteration the patterns are assigned to the
cluster having the nearest center; and the centers of the clusters are updated after assignment of all patterns. The center
of a cluster is the arithmetic mean of the patterns assigned to it at the previous iteration. Thus if V = [v1,v2, . . . ,vc], includes
c number of vectors vi (vi, 1 6 i 6 c) of cluster prototypes, then after the first iteration v1 becomes the arithmetic mean of the
patterns assigned to the first cluster at this iteration, v2 the arithmetic mean of the patterns assigned to second cluster and so
on. It means that the different components of the vector vi are the arithmetic means of corresponding component values of
the patterns belonging to the ith cluster. This process stops when the centers become fixed i.e. no changes occur from the
partitioning point of view.

This process is ‘‘partitive” because at every iteration the partitions or boundaries between the clusters are changed and
some patterns from one cluster are moved to some other clusters. The boundaries are crisp or hard as each pattern is as-
signed to only one cluster. The algorithm is put in a tabular form (in Table 1).

The HCM algorithm basically minimizes the following objective function
Table 1
HCM al

Inpu
Outp
Step
Step
Step
Step
Step
Step
Step
JðX; VÞ ¼
Xc

i¼1

Xn

k¼1

Dik; ð1Þ
where X = [x1,x2, . . . ,xn] is the set of n patterns, xk is the kth pattern 2 X and Dik = kxk � vik2 (Euclidean norm) is the dissim-
ilarity measure between the sample xk and the ith cluster center.

2.2. Fuzzy clustering

Fuzzy sets were introduced in 1965 by Lotfi Zadeh [70] as a new way to represent vagueness in everyday life. They are
generalizations of conventional (crisp) set theory. Conventional sets contain objects that satisfy precise properties required
for membership. Fuzzy sets, on the other hand, contain objects that satisfy imprecisely defined properties to varying degrees.
A fuzzy set A in a space of points Univ = {u} is a class of events with a continuum of grades of membership and is character-
ized by a membership function lA(u) which associates with each point in Univ a real number in the interval [0,1] with the
value of lA(u) at u representing the grade of membership of u in A. Formally, a fuzzy subset A of the universe Univ is defined
as a collection of ordered pairs
A ¼ ðlAðuÞ;uÞ;8u 2 Univ
� �

; ð2Þ
where the support of A is the subset of Univ and is defined as:
SðAÞ ¼ uju 2 Univ & lAðuÞ > 0
� �

: ð3Þ
The characteristic function lA(u), (0 6 lA(u) 6 1), in fact, can be viewed as a weighting coefficient which reflects the ambi-
guity in making a decision about an event, and as it approaches unity, the grade of membership of an event in A becomes
higher. For example, lA(u) = 1 indicates a strict containment of the event u in A. If on the other hand, u does not belong
to A, lA(u) = 0. Any intermediate value would represent the degree to which u could be a member of A.

Relevance of fuzzy set theoretic methods in pattern recognition and image analysis problems has adequately been ad-
dressed in the literature [2,12,15,25,37,45,48,50,53,55,56,63,68]. Fuzzy set theories are reputed to handle uncertainties
[42], to a reasonable extent, arising from deficiencies of information available from a situation (the deficiency may result
from incomplete, ill-defined, not fully reliable, vague and contradictory information). Fuzzy clustering is very useful in
gorithm.

t: Unlabeled data set of n patterns.
ut: c clusters.
1: Select c patterns randomly from the data set as initial cluster centers vi; i = 1,2, . . . ,c.
2: Assign each (unassigned) pattern to the cluster having the nearest cluster center.
3: Compute the mean of assigned patterns to the ith cluster and assign it to the corresponding vi (" i).
5: Compute D = k(Vt � Vt�1)k; t denotes tth iteration.
6: Check if D < �; where � is a predefined small positive constant.
7: If the above condition is not true goto Step 2.
8: Stop.
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discovering clusters/groups from data with overlapping between them. Contrary to the classical clustering (where one ele-
ment can be assigned to exactly one group), in fuzzy clustering the elements are assigned not to any one group but to all the
groups with certain degree of belonging. This degree of belonging is represented by a numeric value between 0 to 1 and is
called ‘‘membership grade” which indicates how much an element belongs to a particular cluster. This membership value in
hard clustering can be either 1 or 0 (1 is for ‘‘belonging” and 0 is for ‘‘not belonging”).

The basic concepts of image analysis, e.g., the concept of a region, or a boundary or a corner or a relation between regions
do not lend themselves to precise definition [52,57,59]. This realization motivated the researchers to develop fuzzy image
processing and recognition systems [2,9,20,38,52,53]. A gray tone image possesses ambiguity within each pixel because
of the possible multi-valued levels of brightness. If the gray levels are scaled to lie in the range [0,1], we can regard the gray
level of a pixel as its degree of membership in the set of high-valued bright pixels - thus a gray tone image can be viewed as a
fuzzy set. Regions, features, primitives, properties, and relations among them that are not crisply defined can similarly be
regarded as fuzzy subsets of images. In our problem we assume that a pixel can belong to both changed and unchanged clas-
ses with certain degrees of membership. The situation is inherently ambiguous as there is no clear boundary between chan-
ged and unchanged regions, and we try to solve it using fuzzy clustering [2,62].

Amongst various fuzzy clustering algorithms, fuzzy c-means (FCM) [2] is the basic one. Since it has some drawbacks, sev-
eral algorithms have been developed to improve the performance. Here we will have a comprehensive study on the basic
FCM as well as on an improvement done by Gustafson and Kessel [26].

2.2.1. Fuzzy c-means clustering (FCM)
One of the commonly used families of clustering algorithms is the scheme based on function optimization. FCM algorithm

belongs to that family. It attempts to find fuzzy partitioning of a given pattern-set by minimizing the objective functional
Table 2
FCM alg

Inpu
Outp
Step
Step
Step
Step
Step
Step
Step
Step
JmðX; U;VÞ ¼
Xc

i¼1

Xn

k¼1

ðlikÞ
mDik; ð4Þ
where U=[lik] 2Mfcn, fuzzy partition matrix of X, and
vi ¼
Pn

k¼1ðlikÞ
mxkPn

k¼1ðlikÞ
m ð5Þ
with lik (degree of belonging of pattern xk to the ith cluster) is expressed as
lik ¼
1Pc

j¼1
dik
djk

� � 2
ðm�1Þ

; ð6Þ
where dik =
ffiffiffiffiffiffiffi
Dik
p

and m(>1) is a parameter, called fuzzifier, which controls the fuzziness of the algorithm. Efficiency of FCM is
highly dependent on the proper selection of the fuzzifier. For m� 1 the process is more fuzzy. During optimization of the
functional Jm(X;U,V), following two constraints must be satisfied: (i)

Pc
i¼1lik ¼ 1 and (ii) lik 2 [0,1]. (Thus HCM is a special

case of FCM where lik = 0 or 1, " i and k.)
In FCM we generally normalize the partition U. If we shift the algorithm stated above by one-half cycle so that initializa-

tion is done on V rather than on U, then the type of iteration is called alternating optimization (AO). Here the stopping cri-
terion becomes k(Vt � Vt�1)k < �. The resulting algorithm is called FCM-AO. Bezdek [51] proposed that the procedure
terminating on U is much more stringent, since many more parameters become closer before termination occurs. The
FCM algorithm is put in a tabular form in Table 2.

Singularity occurs in FCM when one or more of the distancesk(xk � vi)k = 0 at any iteration. This is rare in practice, but if
this happens then (6) cannot be evaluated. In this case, it has been suggested in [51] to assign zeros to each nonsingular class
and distribute membership to the singular classes arbitrarily subject to the constraint

Pc
i¼1lik ¼ 1.

Though the FCM algorithm is popular for its simplicity and less computation time, it tends to recover clusters with similar
sizes and densities and circular shapes. When clusters have non-spherical (ellipsoidal/linear varieties) shapes, FCM fails to
orithm.

t: Unlabeled data set consisting of n patterns.
ut: Prototypes V and fuzzy partition matrix U.
1: Set fuzzifier m and initialize U randomly.
2: Compute each cluster center using (5).
3: Compute all possible distances dik: i = 1,2, . . . ,c; k = 1,2, . . . ,n.
4: Update fuzzy partition matrix using (6).
5: Compute D = k(Ut � Ut�1)k; t denotes tth iteration.
6: Check if D < �; where � is a predefined small positive constant.
7: If the above condition is not true goto Step 2.
8: Stop.



Table 3
GKC algorithm.

Input: Unlabeled data set consisting of n patterns.
Output: Prototypes V and fuzzy partition matrix U.
Step 1: Set fuzzifier m, initialize U randomly and qi reasonably.
Step 2: Compute each cluster center using Eq. (5).
Step 3: Compute all the distances dikAi

using Eq. (8); i = 1,2, . . . ,c; k = 1,2, . . . ,n.
Step 4: Update fuzzy partition matrix using Eq. (9).
Step 5: Compute D = k(Ut � Ut�1)k; t denotes tth iteration.
Step 6: Check if D < �; � is a predefined small positive constant.
Step 7: If the above condition is not true goto Step 2.
Step 8: Stop.
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provide good performance. Suitable value of m may improve the performance. In literature [51] suggestion has been given to
select the value of this parameter in between 1.5 and 2.5, but it is not applicable for all the data sets [51].

2.2.2. Gustafson–Kessel clustering (GKC)
It is already stated that since FCM employs Euclidean norm to measure the dissimilarity between patterns and cluster

centers, only spherical clusters can be detected properly using it. Gustafson and Kessel introduced [26] adaptive distance
norm to measure the distance between clusters using fuzzy covariance matrix (a fuzzy equivalent of the classical covariance)
- a representation of cluster centers along with data points. Using GKC [26] ellipsoidal clusters can be detected. Each cluster
has its own norm-inducing matrix Ai, a positive definite symmetric one, for automatically adapting its shape. The fuzzy
covariance matrix Fi of the ith cluster is expressed as:
Fi ¼
Pn

k¼1ðlikÞ
mðxk � viÞðxk � viÞTPn

k¼1ðlikÞ
m : ð7Þ
The distance dikAi
is computed as:
dikAi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � viÞT Aiðxk � viÞ

q
; ð8Þ
where the norm inducing matrix Ai ¼ ½qidetðFiÞ�1=gF�1
i , g is the dimension of input patterns. qi is a predefined constant which

controls the shape of the ith cluster. Thus
lik ¼
1

Pc
j¼1

dikAi
djkAi

� � 2
ðm�1Þ

: ð9Þ
The objective function Jm will now be of the form
JmðX; U;V;AÞ ¼
Xc

i¼1

Xn

k¼1

ðlikÞ
mDikAi

; ð10Þ
where DikAi
¼ d2

ikAi
.

It can be noticed that in the first step of the algorithm, though U is initialized randomly, qi has to be set properly to detect
the proper shapes of the clusters. The role of the parameter m is the same as that used in FCM. The algorithm is put in a
tabular form (in Table 3).

3. Genetic algorithms and simulated annealing

Genetic algorithms (GAs) [23,49] and Simulated annealing (SA) [40] are two widely used optimization techniques for
dealing with objective functions with high non-linearity or having multiple peaks and valleys in their landscapes. Fuzzy clus-
tering algorithms may get stuck to local optima because of random initial configurations. To get rid of this problem i.e. to
reach to a global optimum with higher probability we have combined fuzzy clustering algorithms with these optimization
techniques (GAs and SA). Let us briefly discuss them here.

3.1. Genetic algorithm

When exploring a problem domain with GAs one must specify a set (known as population) of proper representation of
possible solutions (called individuals or chromosomes). It is common to represent a chromosome as a string of 1s and 0s
(known as binary coded GA) [49]. Initially the chromosomes are randomly initialized associated with a fitness value based
on a fitness function (fit_func). Crossover (recombination) and mutation are two common operators of GAs. A selection mech-
anism (sel_mech) is adopted to select two chromosomes randomly from the population as a parent pair. Then crossover is



Table 4
Genetic algorithm.

Input: A set of possible solutions.
Output: A set of good solutions.

Step 1: Define fit_func, sel_mech,
Set crossprob, mutprob,
Initialize pop of a reasonable size.

Step 2: Do the following evolutionary operations on the chromosomes:
� selection
� crossover
� mutation

Step 3: Check termin_crtn. If not met go to Step 2.
Step 4: Stop.

Table 5
Simulated annealing.

Input: A randomly chosen configuration.
Output: A globally optimum configuration.

Step 1: Randomly select (initialize) a configuration (Confcurrent) and set temperature T0 to a high value; 0 denotes 0th iteration.
Step 2: Compute the cost (Costcurrent) of the (Confcurrent) by some procedure.
Step 3: Perturb (Confcurrent) by some rule and obtain perturbed configuration (Confprtrbd).
Step 4: Compute the cost of Confprtrbd, Costprtrbd.
Step 5: Compute DC = (Costprtrbd � Costcurrent).
Step 6: If (Costprtrbd <= Costcurrent)

Confcurrent = Confprtrbd

else
Confcurrent = Confprtrbd with a probability exp (�DC/ Tt).

Step 7: Decrement Tt slightly by some rule.
Step 8: Check some termination criterion.
Step 9: If the criterion is not met goto Step 3.

Step 10: Stop.
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done on the selected pair. This leads to exchange of segments of the parents from randomly chosen point(s) (called crossover
point(s)) and by this process two offsprings are generated. Crossover is performed depending upon a probability called cross-
over probability (crossprob). After crossover the two offsprings are subjected to mutation, where the bits of the offsprings are
flipped from 0 to 1 or vice versa. Mutation is performed depending upon (a very low) a probability called mutation probability
(mutprob). The process continues until all the parent pairs undergo the same set of operations and the total process is called a
generation. This process ends after some termination criterion (termin_crtn) is satisfied. The basic GA stated above is put in a
tabular form (in Table 4).

Clusterings (both hard and fuzzy) combined with GAs is a popular approach in research [35,60]. Several techniques and
algorithms are suggested in the last two decades (e.g. [19,28,29]) to enhance the clustering processes by hybridizing them
with GAs.

3.2. Simulated annealing

Simulated annealing (SA) is one of the stochastic relaxation algorithms which simulates the physical annealing procedure
[40,44]. It is a global-search procedure. The basic SA algorithm is put in Table 5.

Clusterings combined with SA is also a popular and well-discussed approach in literature [41,67]. A set of randomly ini-
tialized cluster representatives is input to the process as candidate solutions. The solution represents the configuration
(Conf). The Cost is the value of the corresponding objective function of the clustering. The aim is to get the global optimum
solution at the end of process.

4. Validity measures for fuzzy clustering

Validity indices for any clustering can be used from several angles to measure the correctness about the partitioning. It
may tell us about the number of natural groups in some data i.e. the number of the clusters or it may be used to determine
the value of some parameters by which clustering may be affected. A popular index to validate the outcome of a fuzzy clus-
tering proposed by Xie and Beni [69], known as Xie–Beni index, is used widely by many researchers and is described as:
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vXB ¼
Pc

i¼1

Pn
k¼1ðlikÞ

2jjxk � vijj2

n min|{z}
i–j

jjvi � vjjj2
0
@

1
A

: ð11Þ
For a good partitioning the index stated here should be minimum. In Eq. (11) the numerator represents the compactness of
the fuzzy clusters whereas the denominator is the distance of the two least separated fuzzy clusters. Thus minimizing the
numerator (increasing the compactness) and maximizing the denominator (increasing the minimal separation) would suf-
fice the basic intention of clustering. It is less sensitive to the value of m compared to other validity indices like partition
coefficient (vPC) of Bezdek and that given by Fukuyama and Sugeno (vFS). Unlike vPC it can consider the data structures of
the clusters.

The index proposed by Xie–Beni uses Euclidean norm in its numerator. So, we have used this to evaluate the outcome of
FCM (or FCM combined with GA/SA) as FCM employs Euclidean norm for clustering purpose. For GK type we have changed
this norm to a scaled Mahalanobis one as in [39] to evaluate the outcome of the process and this is denoted by vXBe. The sub-
script ‘e’ is used to indicate ellipsoidal nature of clusters.
5. Proposed change detection technique

Remotely sensed images are normally stored in gray scale format. It is common to represent them in 8-bit gray scale, hav-
ing 256 (28) shades of gray levels. In our experiment also we have used two data sets of the described format where every
pixel is of a gray shade between 0 to 255 (0 represents black and 255 white).

Let us consider two coregistered and radiometrically corrected multispectral images X1 and X2 of size p � q, acquired over
the same geographical area at two different time instants t1 and t2, and let DI = {l(m,n), 1 6m 6 p, 1 6 n 6 q} be the difference
image obtained by applying the CVA technique as follows:
PDIðm;nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnum

i¼1

PX1ðm;nÞbi

� PX2 ðm;nÞbi

� �2
vuut ; ð12Þ
where PDIðm;nÞ is the gray value of the (m,n)th pixel in the difference image generated from corresponding pixels of the images
X1 and X2 having num bands b1,b2, . . . ,bnum. A specific section of the electromagnetic spectrum (of the order of micrometer in
our case) is called a band. Generating a difference image by using several bands allows us to combine the information about
reflectance properties of the land cover types (soil, vegetation, water etc.) at different wavelengths of light.

To exploit the spatio-contextual information, input patterns are generated corresponding to each pixel in the difference
image DI, considering its spatial neighborhood system Nd of order d. For a given spatial position (m,n), Nd(m,n) is defined as
Fig. 1. Neighborhood of the pixel at position (m,n). (a) N2 and (b) N3.
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follows: Nd(m,n) = {(m,n) + (i, j), (i, j) 2 Nd}. Figs. 1(a) and (b) depict the second (N2) and third (N3) order neighborhood sys-
tems of a pixel at position (m,n).

In the present work we have generated a two dimensional pattern corresponding to the pixel at position (m,n) of DI by
considering the gray value of that pixel as one feature and the average of the gray value of the 8 neighbors in N2 (neighbors
are within a distance of 2 from the center pixel of the system) as another feature. We may work upon some higher order
(d > 2) neighborhood system (like N3) to generate this feature also; but in those cases computational cost will be more. Since
each pixel generates a pattern, the total number of patterns will be p � q.

After generating the pattern-set we have used two fuzzy clustering algorithms discussed earlier namely FCM and GKC to
generate two clusters. We have used HCM also to establish the effectiveness of using fuzzy clustering algorithms. FCM as-
sumes that the clusters are spheroidal, while GKC tries to extract the exact shape of clusters by varying some parameters. To
overcome the pitfalls of clusterings (hard/fuzzy) like getting stuck at some suboptimal points in their search spaces due to
initial configurations, we have hybridized them with GA and SA. After generating two clusters by a clustering model, one has
to be marked as changed and the other as unchanged. For this purpose we have calculated the mean values of the two clusters
and the cluster whose center is closer to the origin (of the feature space) is labeled as unchanged and the other one as chan-
ged. The pixels corresponding to changed one are marked as black (gray level 0) and the unchanged ones are marked as white
(gray level 255) in the generated change detection map.

Combination of HCM with GA is termed as G_HCM (Genetic HCM) and that with SA as SA_HCM (simulated annealing
HCM) in the rest of this paper. For fuzzy clustering also we have named the processes in a similar way, combining FCM with
GA results in G_FCM and with SA, SA_FCM. For GKC we only worked upon combining with SA (SA_GKC) and not with GA.
Section 7 will highlight the practical difficulties behind it.
6. Description of the data sets

In order to carry out the experimental analysis aimed to assess the effectiveness of the proposed approach, we considered
two multitemporal remote sensing data sets corresponding to geographical areas of Mexico and Island of Sardinia, Italy. The
spatial resolution of the sensors (ETM+ of LANDSAT-7 and TM of LANDSAT-5) is 30 meters. Each pixel thus represents an area
of 30 m � 30 m. The information regarding the north direction of the data could not be made available from the authority. A
detailed description of each of the data sets is given below.
6.1. Data set related to mexico area

The first data set used in our experiment is made up of two multispectral images acquired by the Landsat Enhanced The-
matic Mapper Plus (ETM+) sensor of the Landsat - 7 satellite in an area of Mexico on 18th April 2000 and 20th May 2002.
From the entire available Landsat scene, a section of 512 � 512 pixels has been selected as test site. Between the two afore-
mentioned acquisition dates, fire destroyed a large portion of the vegetation in the considered region.

Figs. 2(a) and (b) show channel 4 of the 2000 and 2002 images, respectively. In order to make a quantitative evaluation of
the effectiveness of the proposed approach, a reference map was manually defined (see Fig. 2(d)) according to a detailed vi-
sual analysis of both the available multitemporal images and the difference image (see Fig. 2(c)). Different color composites
of the above mentioned images were used to highlight all the portions of the changed area in the best possible way. This
procedure resulted in a reference map containing 25,599 changed and 2,36,545 unchanged pixels. Experiments were carried
out to produce, in an automatic way, a change detection map as similar as possible to the reference map that represents the
best result obtainable with a time consuming procedure.

Analysis of the behavior of the histograms of multitemporal images did not reveal any significant difference due to light
and atmospheric conditions at the acquisition dates. Therefore, no radiometric correction algorithm was applied. The 2002
image was registered on the 2000 one using 12 ground control points. The procedure led to a residual average misregistra-
tion error on ground control points of about 0.3 pixels.
6.2. Data set related to Sardinia island, Italy

The second data set used in our experiment is composed of two multispectral images acquired by the Landsat Thematic
Mapper (TM) sensor of the Landsat - 5 satellite in September 1995 and July 1996. The test site is a section of 412 � 300 pixels
of a scene including lake Mulargia on the Island of Sardinia (Italy).

Between the two aforementioned acquisition dates, water level in the lake increased (see the lower central part of the
image). Figs. 3(a) and (b) show channel 4 of the 1995 and 1996 images, respectively. As in the case of Mexico data set, in
this case also a reference map was manually defined (see Fig. 3(d)) according to a detailed visual analysis of both the avail-
able multitemporal images and the difference image (see Fig. 3(c)). At the end, 7480 changed and 1,16,120 unchanged pixels
were identified. As the histograms did not show any significant difference, no radiometric correction algorithms were ap-
plied to the multitemporal images. The images were coregistered with 12 ground control points resulting in an average
residual misregistration error of about 0.2 pixels on the ground control points.



Fig. 2. Image of Mexico area. (a) Band 4 of the Landsat ETM+image acquired in April 2000, (b) band 4 of the Landsat ETM+ image acquired in May 2002, (c)
corresponding difference image generated by CVA technique, and (d) reference map of the changed area.

Fig. 3. Image of Sardinia island, Italy. (a) Band 4 of the Landsat TM image acquired in September 1995, (b) band 4 of the Landsat TM image acquired in July
1996, (c) difference image generated by CVA technique using bands 1, 2, 4, and 5; and (d) reference map of the changed area.
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7. Experiments and results

To assess the effectiveness of the proposed approach, we have made both qualitative (visual) and quantitative analysis of
the experimental results. In visual analysis we have compared change detection map (a binary image) with the ground truth
image (again, a binary one). We then presented a quantitative analysis with respect to overall error. We made a comparative
study of the performances of our proposed algorithms with those of one context-insensitive technique and two context-
sensitive techniques. The context-insensitive technique (MTET) as mentioned earlier produces a minimum error change
detection map by finding an optimal decision threshold for DI assuming pixels to be independent in spatial domain.
Context-sensitive techniques compared are: (i) the technique presented in [5] where EM is combined with MRF and will
be referred as EM+MRF and (ii) a technique based on ‘‘Hopfield-Type Neural Networks” [21] (will be referred as HTNN).
In [21] four different Hopfield-type network models were presented. We have compared with 2nd order continuous model
as we also have used 2nd order neighborhood information in the present work.

For Mexico data set, the DI is generated using the CVA algorithm by considering band 4 as it is reported to be very effec-
tive to locate burned area. For Sardinia data set, the DI is generated by the CVA algorithm using spectral bands 1, 2, 4 and 5.
As mentioned earlier, for both the fuzzy clustering techniques the value of fuzzifier (m) affects the results. For GKC algorithm
qi also affects the results. Here we have presented the best results obtained by varying these parameters. We have varied m
starting from 1.1 taking an incremental step size of 0.1 in case of FCM and stopped at that point where the performance of
the algorithm started degrading. In case of GKC maintaining the same criterion for varying m, we have fixed one qi to 1 and
varied the other one from 1 taking an incremental step size of 0.1 and vice versa up to that extent where we have achieved
the best result. For all the experiments � is set to 0.0000001.
7.1. Hybridization with GA

As mentioned above the fuzzy clustering algorithms function better for some values of the parameters (m for FCM and m
and qi for GKC). While combining them with GA or SA we have considered those values of the parameters only.

When dealing with clusterings combined with GA it is common to represent a chromosome as a candidate solution that con-
sists of the representatives of the clusters. Clustering algorithms are associated with an objective function. As better clustering
promises the corresponding functional to be minimized, we have chosen the fitness function as the functional itself as in [29].

In this work the chromosomes are binary representations of the two features of the two cluster centers (changed and un-
changed) in some specific order. Our remotely sensed images are of 8-bit. So, the first feature of a generated pattern can be
represented by a minimum of 8 bits. The second feature of the pattern is a real valued number (Ref. Section 5). We have rep-
resented this by 11 bits where first 8 bits are to represent the integer part and last 3 bits are for floating part of the same for a
better precision. So a chromosome is of 38 bits (19 bits representing a cluster center).

A population size of 30 has been taken in our experiments. We have used 2-fold tournament selection [23] in our experi-
ments to select the two parent chromosomes to reproduce two offsprings. Here two chromosomes are randomly sampled from
the current population. The one having higher fitness is chosen as the first parent. The same procedure is repeated to select the
second one. For better exploration two point crossover (as two class problem is involved) is performed as reported in literatures
[27]. crossprob and mutprob are set to 0.9 and 0.01 respectively. An elitist strategy [49] is adopted to preserve the best solution; and
the process terminates when the fitness of the best individual of a population is not changed for consecutive 50 generations.
7.2. Hybridization with SA

In SA only one candidate solution is considered for optimization purpose, unlike GA. A set of randomly chosen cluster
representatives (means for HCM and fuzzy means for FCM and GKC) is determined such that the corresponding clusters be-
come compact. The set represents the configuration Conf and the corresponding value of the associated objective functional
(of the concerned clustering model) is the Cost (Ref. Section 3.2) at that moment. To perturb the Confcurrent a randomly cho-
sen cluster representative (one vi) is changed slightly by adding a random number from a normal distribution with mean 0
and standard deviation 1.

If infinite time is allotted to SA it can find the global or near global minimum without getting trapped to a local one. This
requires starting from a very high temperature (T) or control parameter (?1), a slow reduction of the temperature and a
very low (?0) final temperature. This is the sufficient condition for this technique to reach to a global optimum. In
[41,67] detailed discussions suggest that it may not be the necessary condition for better results. Several authors have pro-
posed many heuristics to overcome this computational burden. We have chosen one of them. We have followed the concept
of acceptance ratio (v0) which is defined as the ratio of number of accepted transitions divided by the proposed transitions
[67] to set the initial temperature. To cool the system we have chosen the linear cooling scheme where Tt+1 = (Tt � linc) (t de-
notes tth iteration). It has been reported in literatures [41] that SA is very much sensitive to the random numbers generated
(responsible for the nature of moves) as well as its success highly depends upon the scaling of the function it tries to opti-
mize and the current temperature Tt (having dependency on the T0) during iterations [67] because all the factors control the
probability of acceptance when an uphill movement is made. The approach we have followed is that for some certain set of
random numbers, choosing linc in between 0.001 to 0.01 and minimum T0 as 10. If v0 falls below 0.8 we doubled our initial
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temperature T0 to start the process. Number of iterations is chosen depending on the value of linc to prevent temperature
from being negative.

Now we will explore the reason why it was not possible to hybridize GKC with GA. In both the optimizations (GA and SA)
we have to evaluate Jm(X;U,V,A) at every iteration. For this purpose we need U and V both and they must correspond to each
other. In SA we have generated random numbers of small variation (from a normal distribution with mean 0 and standard
deviation 1) and only one fuzzy mean has been perturbed. Thus new vi and the previous lik are highly correlated. So, in
SA_GKC, we have evaluated Jm(X;U,V,A) by taking the new vi and previous values of lik. As in GA crossover operation is in-
volved, so vi can get changed drastically and the above mentioned correspondence between lik and vi may get completely lost.
Therefore we can not use the evolved vi to calculate the new dikAi

as the scaled Mahalanobis distance (dikAi
) is a function of the

present membership values (lik) and corresponding fuzzy means (vi) (can be verified from Eqs. (7) and (8)) and so the new lik.
Also we can not use the previous lik to compute the value of Jm(X;U,V,A) directly. So we have ignored this hybridization.

7.3. Visual analysis

The change detection maps obtained for Mexico data set by the HCM, FCM and GKC are shown in Figs. 4 and 5(a) and (b),
respectively. Figs. 6 and 7(a) and (b) are the change detection maps obtained for Sardinia island data by using HCM, FCM and
GKC respectively.

One can visually compare the change detection map generated by the proposed algorithms with the corresponding ground
truth. This gives a rough idea about the quality of the generated change detection map.

The effectiveness of the proposed change detection technique is evaluated globally by analyzing the change detection map.
The change detection map obtained by HCM seems to be better than FCM for Mexico data set because of the false alarms (dis-
cussed later in ‘‘Quantitative Analysis” section) generated over wider portions by the FCM. But careful inspection reveals that
the extreme bottom-left corner of the scene is detected in a much better way by FCM, where HCM failed. For Sardinia data
set visual inspection of the change detection map shows that FCM is doing better than HCM. Similarly GKC is doing better than
FCM. This directs us to judge the effectiveness of the proposed technique quantitatively, which obviously is better than visual
inspection and is presented in the following section.
Fig. 4. Change detection map obtained for Mexico data set by HCM.

Fig. 5. Change detection maps obtained for Mexico data set by (a) FCM (m = 14.0) and (b) GKC (m = 15.5 and q1 = 1 and q2 = 2.2).



Fig. 6. Change detection map obtained for Sardinia data set by HCM.

Fig. 7. Change detection maps obtained for Sardinia data set by (a) FCM (m = 1.1) and (b) GKC (m = 2 and q1 = 3.5 and q2 = 1).
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7.4. Quantitative analysis

Quantitative analysis is carried out in terms of both overall error (OE), false alarms (i.e., unchanged pixels identified as
changed ones - FA) and missed alarms (i.e., changed pixels categorized as unchanged ones - MA). It is better to have less
MA because it denotes the actual changes that the algorithm failed to detect. Also OE should be as small as possible. We have
compared the results (different types of alarms) generated by crisp clustering (HCM) and by fuzzy clustering algorithms
(FCM and GKC) using the ‘‘ground truth” image as the reference map. In Tables 6, 9 and 12 we put the overall change-detec-
tion error obtained by the HCM, FCM and GKC techniques respectively (we have put the best results obtained by varying the
parameters).

While combining FCM and GKC with GA and SA we have used those parameter values for which they were giving better
results. Results produced by the hybridization processes (of FCM and GKC with GA or SA) are put in Tables 10, 11 and 13. For
comparison between hard and fuzzy clustering, we have optimized the functional of HCM and put the results in Tables 7 and
8. From the results it is clear that using the hybrid procedures, results are improved. It is observed from the results that for
our data sets SA is working better than GA to detect the changes.

From the results it is obvious that for change detection purpose it is better to use fuzzy clusterings (FCM or GKC) rather
than crisp clustering (HCM). Overall error incurred by FCM is less than that obtained by HCM in all cases; and GKC incurred
Table 6
Missed alarms, false alarms and overall error obtained by HCM.

Data set MA FA OE

Mexico 3425 747 4172
Sardinia 275 4133 4408

Table 7
Missed alarms, false alarms and overall error obtained by G_HCM.

Data set MA FA OE

Mexico 2827 785 3612
Sardinia 3006 132 3138



Table 8
Missed alarms, false alarms and overall error obtained by SA_HCM.

Data set MA FA OE

Mexico 1965 1095 3060
Sardinia 425 2727 3152

Table 9
Missed alarms, false alarms, overall error and validity index obtained by FCM.

Data set MA FA OE m vXB

Mexico 1164 1764 2928 14.0 0.08
Sardinia 494 2246 2740 1.1 0.30
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the least error. It is noticed that the results are improved in all cases for GKC. Since GKC uses Mahalanobis distance and can
extract even non-convex clusters, it produced better results for the used data sets (since the data mainly contain irregular
shaped changed regions). Again by varying qi (instead of fixing to 1) in GKC, shapes of the corresponding clusters can be
approximated more accurately. The reason being, by varying the parameter (qi) with respect to each other (i.e. fixing one
to 1 and varying the other) the assumed shapes of the clusters could be varied. This is one of the major factors for GKC to
work well for this problem. This suggests that incorporation of the knowledge that the changed and unchanged classes are
very unstructured and are of different shapes, may be helpful while solving change detection problems. It has been seen that
the proposed technique works well within a range of values of the parameters (m, q1 and q2).

From Tables 9–13 we can see the behavior of vXB and vXBe. For Sardinia data set we can see that when changes are detected
properly it is reflected on the value of the index vXB i.e. it is decreasing (except the case of G_FCM). On the other hand for
Mexico data set the vXB index is constant (0.8 for FCM, G_FCM and SA_FCM) but vXBe is showing better results. The value
of m used for Mexico data is large whereas for the Sardinia it is small. As high value of m suggests more vagueness (and over-
lapping of the two clusters) in data, so it would not be incorrect to infer that the two clusters are more unstructured in Mex-
ico data set than the other one. Thus, vXBe is a better choice for our purpose to extract the clusters by assuming them as
elliptical as this index employs Mahalanobis norm.

As mentioned earlier we compared the results obtained by the proposed fuzzy techniques with those obtained using
EM+MRF [5], MTET [5] and HTNN [21]. To have a comparative study among these and the proposed techniques we have
Table 10
Missed alarms, false alarms, overall error and validity index obtained by G_FCM.

Data set MA FA OE m vXB

Mexico 1148 1721 2869 14.0 0.08
Sardinia 627 1983 2610 1.1 0.30

Table 11
Missed alarms, false alarms, overall error and validity index obtained by SA_FCM.

Data set MA FA OE m vXB

Mexico 1095 1725 2790 14.0 0.08
Sardinia 915 975 1890 1.1 0.26

Table 12
Missed alarms, false alarms, overall error and validity index obtained by GKC.

Data set MA FA OE m q1 q2 vXBe

Mexico 1453 1130 2583 15.5 1 2.2 0.029355
Sardinia 826 1017 1843 2 3.5 1 0.210041

Table 13
Missed alarms, false alarms, overall error and validity index obtained by SA_GKC.

Data set MA FA OE m q1 q2 vXBe

Mexico 947 1587 2534 15.5 1 2.2 0.028852
Sardinia 1139 558 1697 2 3.5 1 0.196665



Table 14
Missed alarms, false alarms and overall error for Mexico data set.

Techniques used MA FA OE

MTET 2404 2187 4591
HCM 3425 747 4172
G_HCM 2827 785 3612
SA_HCM 1965 1095 3060
HTNN 558 2707 3265
EM+MRF (b = 1.5) 946 2257 3203
FCM (m = 14.0) 1164 1764 2928
G_FCM (m = 14.0) 1148 1721 2869
SA_FCM(m = 14.0) 1065 1725 2790
GKC (m = 15.5, q1 = 1, q2 = 2.2) 1453 1130 2583
SA_GKC (m = 15.5, q1 = 1, q2 = 2.2) 947 1587 2534

Table 15
Missed alarms, false alarms and overall error for Sardinia data set.

Techniques used MA FA OE

MTET 1015 875 1890
HCM 275 4133 4408
G_HCM 3006 132 3138
SA_HCM 425 2727 3152
HTNN 1187 722 1909
EM+MRF (b = 2.2) 592 1108 1700
FCM (m = 1.1) 494 2246 2740
G_FCM (m = 1.1) 627 1983 2610
SA_FCM (m = 1.1) 915 975 1890
GKC (m = 2, q1 = 3.5, q2 = 1) 826 1017 1843
SA_GKC (m = 2, q1 = 3.5, q2 = 1) 1139 558 1697
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put the results in Tables 14 and 15. From these tables it is seen that for the two data sets (Mexico and Sardinia) the SA_GKC
technique performed the best (OE = 2534 for Mexico and OE = 1697 for Sardinia). Both showed higher performance than
EM+MRF which is a computationally intensive procedure.

From the overall analysis it is felt that GK type clusterings (GKC and SA_GKC) can be a reasonable choice for generating
change detection maps. The existing techniques produced similar performance with the proposed ones, but require either
the assumption of distributions of classes and is very time consuming (EM+MRF) or needs more time (HTNN). On the other
hand the proposed technique does not require any a priori knowledge of the data distributions and is very fast.
7.5. Effect of parameters

To analyze the effect of the parameters in a better way we have plotted OE against m in Fig. 8 for both the algorithms for
Mexico data set. For GKC the plot is for constant qi (taking q1 = 1 and q2 = 2.2). Fig. 9 shows the plot of OE against q2 for
Fig. 8. Plot of OE as a function of m.



Fig. 9. Plot of OE as a function of q2.
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constant q1(=1) and m(=15.5). We have tested our technique taking the parameter values also outside the ranges shown. The
graph is shown for a reasonable range for which the overall error is less.

Let us explain the graphs one by one. Fig. 8 tells us how the value of the fuzzifier m influences the result. Looking at the
graph of FCM we can say that when m is increased beyond 2, OE reduces gradually. Up to m = 14.0 OE reduces and at that
point FCM gives the least OE. Beyond the mentioned point OE starts increasing. As seen form the figure, variations of OE
is negligible for m in the range 11–15; and thus one can select any value of m to have a reasonable performance. The range
showing less variation may be interpreted as linear region of the graph. The similar behavior can be observed for GKC also.
One can see that if proper values of qi are chosen then GKC performs in a well manner. As in FCM, here also we can notice
that from m = 2 onwards the performance is increasing slowly (i.e. OE is decreasing) in a continuous manner. For this algo-
rithm OE continually reduced up to m = 15.5 where GKC showed its best performance. Beyond this OE started increasing.
From the graph, corresponding to GKC, we can suggest that the constant OE region is from 11 up to 13.5.

Though the value of the fuzzifier affects the result in the same manner for both the algorithms FCM and GKC, and for both
the cases we are having some linear section, GKC shows better performance than FCM over the entire range. In case of FCM
we are having a larger linear range compared to GKC, with lesser performance.

Fig. 9 tells us about the effect of qi for some constant value of m, the fuzzifier. We have set m = 15.5 as it gave us the least
OE. We have plotted OE versus q2 by fixing q1 = 1. The reverse i.e. OE versus q1 can also be done. Looking at the graph one can
notice that when q2 is increased beyond 1, OE reduces continuously up to 2.2; and if further increased then OE increases.
Minute observations reveal that for q2 in the range 2 to 2.5 the OE value is order of 2600. Thus one can accept any value
of q2 in this range to have a reasonable performance.

Now the question arises why are we interested about the stable regions of the parameters! The answer is one can use
these ranges of values for similar types of images. Similar findings can be observed for other data sets also.
8. Discussion and conclusion

Unsupervised context-sensitive techniques using fuzzy clustering approach for detecting changes in multitemporal, mul-
tispectral remote sensing images have been proposed in this paper. Since the pixels of the difference image belonging to the
two clusters (changed and unchanged) are not separable by sharp boundaries (as they are highly overlapped), fuzzy clustering
techniques seem to be more appropriate and realistic choice to separate them. From the results also it is noticed that fuzzy
clustering is a better option than crisp clustering. Among the two fuzzy clustering algorithms, only fuzzy c-means and Gus-
tafson–Kessel (GK) are used in the present experiment. To prevent from getting stuck to local optima the fuzzy clustering
algorithms are combined with genetic algorithm and simulated annealing. As GK type clustering can extract clusters with
different (including non-spherical) shapes it is found to be more effective. A fuzzy cluster validity index namely Xie–Beni
index has been used to validate the results of the change detection problem.

The proposed fuzzy clustering techniques have advantages over the context-sensitive process (EM+MRF) presented in [5]
as they are distribution free (need not require any explicit assumption about the underlying two classes, changed and un-
changed) as well as they are less computation intensive. Compared to another context-sensitive technique proposed in
[21], the fuzzy techniques proposed here are very simple, less costly and showed improved performance.

Though it is seen from visual as well as quantitative analysis, that methods based on fuzzy clustering are well suited for
change detection of remotely sensed data, there are some unavoidable problems also - proper selection of the values of fuzz-
ifiers m and qi. Previous domain knowledge may be useful in fixing up the parameter values. In future we hope to explore
this issue. Other fuzzy clustering algorithms, like fuzzy c-varieties/elliptotypes which extract linear substructures in data i.e.,
line-shaped clusters (elongated shapes) may be worth exploring for this problem also.
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